• 中文核心期刊
  • CSCD收录期刊
  • 《高质量科技期刊分级目录》收录期刊
  • 中国机械工程学会理化检验分会会刊
高级检索

基于电感耦合等离子体质谱法的小儿感冒颗粒中22种元素杂质的定量及危害分析

陈在敏, 李沁, 张聪, 黄晓姗, 严璐佳, 陈亮, 金鸣

陈在敏, 李沁, 张聪, 黄晓姗, 严璐佳, 陈亮, 金鸣. 基于电感耦合等离子体质谱法的小儿感冒颗粒中22种元素杂质的定量及危害分析[J]. 理化检验-化学分册, 2025, 61(2): 149-157. DOI: 10.11973/lhjy-hx230667
引用本文: 陈在敏, 李沁, 张聪, 黄晓姗, 严璐佳, 陈亮, 金鸣. 基于电感耦合等离子体质谱法的小儿感冒颗粒中22种元素杂质的定量及危害分析[J]. 理化检验-化学分册, 2025, 61(2): 149-157. DOI: 10.11973/lhjy-hx230667
CHEN Zaimin, LI Qin, ZHANG Cong, HUANG Xiaoshan, YAN Lujia, CHEN Liang, JIN Ming. Quantitative and Hazard Analysis of 22 Elemental Impurities in Xiao'er Ganmao Granules Based on Inductively Coupled Plasma Mass Spectrometry[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2025, 61(2): 149-157. DOI: 10.11973/lhjy-hx230667
Citation: CHEN Zaimin, LI Qin, ZHANG Cong, HUANG Xiaoshan, YAN Lujia, CHEN Liang, JIN Ming. Quantitative and Hazard Analysis of 22 Elemental Impurities in Xiao'er Ganmao Granules Based on Inductively Coupled Plasma Mass Spectrometry[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2025, 61(2): 149-157. DOI: 10.11973/lhjy-hx230667

基于电感耦合等离子体质谱法的小儿感冒颗粒中22种元素杂质的定量及危害分析

基金项目: 

福建省药品监督管理局科技计划项目 2023006

福建省药品监督管理局科技计划项目 2022008

详细信息
    作者简介:

    陈在敏,主任药师,硕士,主要从事药品质量检验与研究工作

    通讯作者:

    陈亮,工程师,硕士,主要从事食品药品质量检验与研究工作,670493321@qq.com;金鸣,主任药师,硕士,主要从事药品质量检验与研究工作,412839192@qq.com

    陈亮,工程师,硕士,主要从事食品药品质量检验与研究工作,670493321@qq.com;金鸣,主任药师,硕士,主要从事药品质量检验与研究工作,412839192@qq.com

  • 中图分类号: O657.63

Quantitative and Hazard Analysis of 22 Elemental Impurities in Xiao'er Ganmao Granules Based on Inductively Coupled Plasma Mass Spectrometry

  • 摘要:

    取小儿感冒颗粒样品0.3 g,加入5 mL硝酸、2 mL 30%(质量分数)过氧化氢溶液,混匀后浸泡过夜,程序升温至195 ℃微波消解45 min。于100 ℃加热赶酸至消解液剩余约1~2 mL,用5%(体积分数,下同)硝酸溶液将残余物转移至50 mL容量瓶中,加入1 mg·L−1 Au标准溶液200 μL,并用5%硝酸溶液稀释至刻度。采用电感耦合等离子体质谱法(ICP-MS)测定上述溶液中B、Al、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Sr、Mo、Cd、Sn、Sb、Ba、Pt、Hg、Tl、Pb等22种元素杂质的含量,在线加入混合内标,用于校正待测元素信号响应值。采用最大限量理论值、人用药品技术要求国际协调理事会(ICH)发布的ICH Q3D元素杂质指导原则中口服用每日允许暴露量、危害系数和综合危害指数评估22种元素杂质对人体造成的健康风险。结果显示:各元素杂质的质量浓度在一定范围内和内标校正后所对应的信号响应值呈线性关系,检出限(3s/k)为0.001~0.401 mg·kg−1;按照标准加入法进行回收试验,回收率为85.1%~104%,测定值的相对标准偏差均不大于5.5%。方法用于31批样品的分析,来自不同厂家的样品中的22种元素含量存在一定差异,但是变化趋势基本一致;元素检出量均小于最大限量理论值、ICH Q3D元素杂质指导原则口服用每日允许暴露量,危害系数及综合危害指数均小于1,说明22种元素杂质无重大健康风险,但是31批样品中有16批样品的综合危害指数高于0.7,说明小儿感冒颗粒可能存在潜在的元素杂质污染风险,应予以持续监控。

    Abstract:

    The 0.3 g of xiao'er ganmao granule sample was taken, and 5 mL of nitric acid and 2 mL of 30% (mass fraction) hydrogen peroxide solution were added. After mixing evenly and soaking overnight, the mixture was digested by microwave at 195 ℃ for 45 min through the heating program. The solution was heated at 100 ℃ until about 1-2 mL of the digestion solution remained. The residue was transferred to a 50 mL-volumetric flask with 5% (volume fraction, the same below) nitric acid solution, and 200 μL of 1 mg·L−1 Au standard solution was added. The mixed solution was diluted to the mark with 5% nitric acid solution for determination of 22 elemental impurities, including B, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sn, Sb, Ba, Pt, Hg, Tl, Pb by inductively coupled plasma mass spectrometry (ICP-MS). Mixed internal standards were added online for calibration of elemental signal response values. The health risks posed by 22 elemental impurities to the human body were evaluated using the maximum limit theoretical value, the daily allowable exposure for oral administration given by the ICH Q3D guideline for elemental impurities published by the International Council on Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), hazard coefficient, and comprehensive hazard index. It was shown that linear relationships between values of the mass concentrations of elemental impurities and signal response values corrected by internal standard were kept in definite ranges, with detection limits (3s/k) in the range of 0.001-0.401 mg·kg−1. Test for recovery was made according to the standard addition method, giving recoveries in the range of 85.1%-104%, and RSDs of the determined values were not greater than 5.5%. The proposed method was used for the analysis of 31 batches of samples, and there were some differences in the content of 22 elements in samples from different manafacturers, but the changing trends were basically the same. The detected amounts of the 22 elemental impurities were all below the maximum limit theoretical value, and the ICH Q3D guideline for elemental impurities allows for daily exposure for oral use. The hazard coefficient and comprehensive hazard index were all less than 1, indicating that there was no significant health risk for the 22 elemental impurities. However, 16 out of 31 batches of samples had a comprehensive hazard index higher than 0.7, indicating that there might be a potential risk of elemental impurity contamination in xiao'er ganmao granules, which should be continuously monitored.

  • 《中华人民共和国药典》(2020年版)(简称ChP 2020)只对35余种中药材的重金属限量进行了规定,对绝大多数的中成药的重金属及有害元素限量并未进行规定,同时重金属及有害元素的相关文献报道也比较少。中成药见效慢、用药周期长、服用量较大,服用了被污染的中成药后,重金属或有害元素可能蓄积在人体内。儿童正处于生长发育期,对重金属及有害元素极为敏感,长期暴露在有害物质环境下,其生长发育将受到不可逆转的危害[1-2],甚至出现个体死亡[3],因此儿童用药标准要求应更高、更严格[4]。小儿感冒颗粒是由板蓝根、石膏、广藿香、连翘、菊花、白薇、地黄、薄荷、大青叶、地骨皮等10味药组成的复方制剂,具有清热解毒、疏风解表的功效。其中,板蓝根、石膏是原粉入药,其中的重金属及有害元素可能被带入制剂,给制剂的质量安全带来一定风险。因此,有必要开发一种高效、准确地监测小儿感冒颗粒中多元素含量的检测方法。

    本工作采用微波消解法前处理样品,结合电感耦合等离子体质谱法(ICP-MS)开发了同时检测小儿感冒颗粒中22种元素杂质的方法,并采用上述方法测定21家生产企业31批次样品中22种元素杂质的含量,采用最大限量理论值、ICH Q3D元素杂质指导原则、危害系数和综合危害指数评估了小儿感冒颗粒中元素杂质的健康风险,可为质量监督部门提供参考。

    iCAP-Q型电感耦合等离子体质谱仪;BHW-09C型恒温加热器;TOPEX型微波消解仪;XS204型电子天平;Milli-Q型超纯水处理系统。

    混合标准储备溶液:精密移取As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl混合标准溶液、Co单元素标准溶液、V单元素标准溶液以及Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn混合标准溶液适量,用5%(体积分数,下同)硝酸溶液稀释,配制成As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl、Co、V的质量浓度为1 000 μg·L−1,Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn的质量浓度为10 000 μg·L−1的混合标准储备溶液。

    Pt标准储备溶液:精密移取Pt单元素标准溶液,用5%硝酸溶液稀释,配制成Pt的质量浓度为100 μg·L−1的Pt标准储备溶液。

    混合标准溶液系列:取适量的混合标准储备溶液及Pt标准储备溶液,用5%硝酸溶液稀释,配制成As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl、V、Co的质量浓度为0.2,1,5,10,20,50,100 μg·L−1,Pt的质量浓度为0.2,0.5,1,2,5,8,10 μg·L−1,Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn的质量浓度为10,50,100,200,400,500,1 000 μg·L−1的混合标准溶液系列。

    Hg标准储备溶液:精密移取Hg标准溶液,用5%硝酸溶液稀释,配制成Hg质量浓度为100 μg·L−1的Hg标准储备溶液。

    Au标准储备溶液:精密移取Au单元素标准溶液,用5%硝酸溶液稀释,配制成1 mg·L−1 Au标准储备溶液。

    Hg标准溶液系列:取适量的Hg标准储备溶液和Au标准储备溶液,用5%硝酸溶液稀释,配制成Hg的质量浓度为0.1,0.2,0.5,1,2,4,5 μg·L−1,Au的质量浓度为4 μg·L−1的Hg标准溶液系列。

    混合内标储备溶液:精密移取Sc、Ge、In、Bi混合标准溶液,用5%硝酸溶液稀释,配制成各内标的质量浓度为1 000 μg·L−1的混合内标储备溶液。

    混合内标使用液:取适量的Sc、Ge、In、Bi混合内标储备溶液,用5%硝酸稀释,配制成各内标的质量浓度为20 μg·L−1的混合内标使用液,通过三通在线载入。

    Hg标准溶液,1 000 mg·L−1,编号GBW08617;Pt单元素标准溶液,100 mg·L−1,编号GBW(E)081296;Co单元素标准溶液,1 000 mg·L−1,编号GBW(E)085381;As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl混合标准溶液,100 mg·L−1,编号GNM-M10222-2013;Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn混合标准溶液,1 000 mg·L−1,编号GNM-M15219-2013;Au单元素标准溶液,100 mg·L−1,编号GSB04-1715-2004;V单元素标准溶液,100 mg·L−1,编号GNM-SV-002-2013;Sc、Ge、In、Bi混合标准溶液,100 mg·L−1,编号GNM-M06097-2013;柑橘叶成分分析标准物质,编号GBW10020(GSB-11);硝酸和30%(质量分数,下同)过氧化氢溶液为分析纯;试验用水为超纯水。

    样品收集于全国21家生产企业,共31批,编号S1~S31,其中5批来自华北地区,4批来自华东地区,6批来自华南地区,5批来自华中地区,4批来自西北地区,3批来自西南地区,4批来自东北地区。使用前,分取适量,粉碎后倒入自封袋中,置于干燥器中保存,备用。

    功率1 800 W;最大工作压力2 000 kPa。消解程序:从室温升温至120 ℃,保持3 min;从120 ℃升温至160 ℃,保持3 min;从160 ℃升温至195 ℃,保持45 min。

    射频功率1 548 W;载气流量1.2 L·min−1,辅助气流量0.8 L·min−1,等离子气流量13.9 L·min−1;样品提升时间40 s;质谱采集模式;重复次数 5次;积分时间0.3 s;蠕动泵转速40 r·min−1;测定模式 动能歧视(KED)碰撞模式;待测元素同位素为11B、27Al、51V、52Cr、55Mn、57Fe、59Co、60Ni、63Cu、66Zn、75As、77Se、88Sr、95Mo、111Cd、118Sn、121Sb、137Ba、195Pt、202Hg、205Tl、208Pb;11B、27Al、51V、52Cr、55Mn、57Fe内标为45Sc,59Co、60Ni、63Cu、66Zn、75As、77Se、88Sr内标为73Ge;95Mo、111Cd、118Sn、121Sb、137Ba内标为115In;195Pt、202Hg、205Tl、208Pb内标为209Bi。

    精密称取样品0.3 g于消解管中,加入5 mL 硝酸、2 mL 30%过氧化氢溶液,混匀后浸泡过夜。第二天盖上内盖,旋紧外套,置于微波消解仪中,按照1.2.1节条件进行消解。消解完全后,冷却至室温,将消解管置于恒温加热器中,于100 ℃加热,直至消解管内溶液剩余约1~2 mL,转移至50 mL容量瓶中,用5%硝酸溶液辅助转移剩余物至50 mL容量瓶中,加入Au标准储备溶液200 μL,用5%硝酸溶液稀释至刻度,摇匀,得到样品溶液。同法制备试剂空白溶液。按照1.2.2节条件测定样品溶液和试剂空白溶液。

    小儿感冒颗粒处方中有部分石膏原粉,石膏的主要成分为CaSO4·2H2O,不易消解,因此试验比较了以硝酸5 mL、硝酸5 mL+30%过氧化氢溶液2 mL、硝酸5 mL+盐酸2 mL作消解溶剂时的消解效果。结果显示:采用硝酸5 mL消解样品时,消解液中存在很多残渣,说明样品消解不完全;采用硝酸5 mL+盐酸2 mL消解样品时,消解液澄清透明,样品消解完全,但是Pb、As、Cr的空白值过高;采用硝酸5 mL+30%过氧化氢溶液2 mL消解时,样品消解完全,且待测元素的空白值均较低。因此,试验选择硝酸5 mL+30%过氧化氢溶液2 mL作为消解溶剂。

    小儿感冒颗粒处方中有部分石膏原粉,石膏属于矿物类药物,可能导致样品消解液的盐分、电离平衡参数等与标准溶液的存在差异,从而产生基质效应等非质谱干扰,导致待测元素信号漂移、抑制或增强[5]。为消除基质效应,提高检测结果的准确度,试验选择采用内标法校正待测元素的信号响应值。

    取混合标准溶液系列和Hg标准溶液系列,按照1.2.2节条件进行测定,以各元素的质量浓度为横坐标,对应的内标校正后的信号响应值为纵坐标绘制标准曲线,线性范围、线性回归方程、相关系数见表1

    表  1  线性参数、检出限和测定下限
    Table  1.  Linearity parameters, detection limits and lower limits of determination
    元素线性回归方程线性范围ρ/(μg·L−1)相关系数检出限w/(mg·kg−1)测定下限w/(mg·kg−1)
    By=8.158×10x+1.579×10310~1 0000.999 90.1050.350
    Aly=2.677×102x+3.823×10410~1 0000.999 40.4011.34
    Vy=9.164×103x+1.671×1030.2~1000.999 90.0020.007
    Cry=1.298×104x+2.868×1030.2~1001.0000.0020.007
    Mny=8.083×103x+1.996×10310~1 0000.999 80.0140.047
    Fey=3.072×102x+3.426×10310~1 0000.999 90.1980.660
    Coy=2.756×104x+8.688×1020.2~1000.999 00.0270.094
    Niy=5.758×103x+2.565×10310~1 0000.999 90.0250.083
    Cuy=1.477×104x+5.536×10310~1 0000.999 80.0110.037
    Zny=2.282×103x+2.116×10410~1 0000.999 90.1020.340
    Asy=9.588×102x+4.909×100.2~1000.999 90.0170.057
    Sey=2.440×10x10~1 0001.0000.0050.016
    Sry=4.687×103x+8.725×10310~1 0001.0000.0470.157
    Moy=5.376×103x+1.997×1020.2~1001.0000.0020.007
    Cdy=4.300×103x+3.775×100.2~1001.0000.0030.010
    Sny=9.602×103x+2.561×1030.2~1001.0000.0160.053
    Sby=9.567×103x+2.117×1020.2~1001.0000.0020.007
    Bay=4.338×103x+2.347×1030.2~1001.0000.0260.087
    Pty=2.471×104x+6.962×1020.2~100.999 00.0010.003
    Hgy=1.615×104x+5.768×1020.1~50.999 80.0030.010
    Tly=1.068×105x+1.459×1020.2~1001.0000.0010.003
    Pby=7.889×104x+2.448×1040.2~1000.999 90.0080.027
    下载: 导出CSV 
    | 显示表格

    按照试验方法制备并测定11份试剂空白溶液,以3,10倍待测元素信号响应值标准偏差s与标准曲线斜率k的比值[6-7]计算检出限(3s/k)和测定下限(10s/k),结果见表1

    取21种待测元素的混合标准溶液(As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl、V、Co的质量浓度为5 μg·L−1,Pt的质量浓度为1 μg·L−1,Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn的质量浓度为100 μg·L−1)及Hg标准溶液(0.5 μg·L−1),按照1.2.2节条件连续测定6次,测得的22种元素杂质信号响应值的相对标准偏差(RSD)为0.75%~2.8%,表明仪器精密度良好。

    精密称取已知22种元素杂质含量的小儿感冒颗粒样品0.3 g各6份,按照试验方法制备样品溶液并测定,Pt、Hg、Tl未检出,其他19种元素杂质测定值的RSD为1.5%~5.5%,表明方法的重复性良好。

    取已知22种元素杂质含量的小儿感冒颗粒样品0.3 g,分别准确加入100 μg·L−1的As、Ba、Cd、Cr、Mo、Pb、Sn、Sb、Tl、V、Co混合标准溶液0.5,1,2 mL,10 mg·L−1的Al、B、Cu、Fe、Mn、Ni、Se、Sr、Zn混合标准溶液0.5,1,2 mL,100 μg·L−1的Pt标准溶液0.25,0.5,1 mL,100 μg·L−1的Hg标准溶液0.25,0.5,1 mL,按照试验方法进行低、中、高等3个浓度水平的加标回收试验,计算各待测元素杂质的回收率和测定值的RSD,结果见表2

    表  2  准确度试验结果
    Table  2.  Results of test for accuracy
    元素低加标量中加标量高加标量质控样w/(mg·kg−1)
    回收率/%RSD/%回收率/%RSD/%回收率/%RSD/%认定值测定值
    B92.42.294.41.693.92.832±331.8,33.1,31.1
    Al90.73.889.32.995.41.81 150±1001.17×103,1.14×103,1.10×103
    V88.44.895.13.392.83.71.16±0.131.10,1.07,1.18
    Cr85.23.893.82.791.82.41.25±0.111.28,1.17,1.23
    Mn91.81.397.30.5696.21.430.5±1.530.1,29.7,30.7
    Fe86.83.294.32.992.12.6480±30475,491,484
    Co85.13.288.74.393.62.70.23±0.060.221,0.252,0.255
    Ni93.21.195.91.896.31.81.1*1.01,0.995,1.06
    Cu90.32.692.42.291.81.36.6±0.56.51,6.62,6.46
    Zn88.51.492.62.291.12.718±218.5,17.8,18.7
    As89.52.496.71.194.31.81.1±0.21.07,1.12,1.16
    Se85.13.597.12.293.52.40.17±0.030.173,0.164,0.181
    Sr92.51.297.80.9796.11.4170±10173,165,171
    Mo95.71.197.81.298.30.790.20±0.010.202,0.195,0.204
    Cd92.92.798.32.896.51.70.17±0.020.173,0.168,0.165
    Sn86.83.588.93.393.43.03.8±0.53.68,3.52,3.74
    Sb93.12.291.71.995.71.50.20±0.060.212,0.197,0.208
    Ba92.41.495.91.896.31.398±696.9,98.4,99.3
    Pt90.92.696.13.493.24.3-
    Hg88.22.893.60.9392.21.10.150±0.020.148,0.152,0.155
    Tl95.32.494.11.896.51.40.06±0.0080.058,0.060,0.059
    Pb1044.892.93.990.73.29.7±0.99.57,9.82,9.66
    下载: 导出CSV 
    | 显示表格

    精密称取柑橘叶成分分析标准物质(质控样)0.3 g各3份,按照试验方法测定其中各元素杂质的含量,结果见表2。其中,“*”代表参考值。

    结果显示:对于实际样品,22种元素杂质的回收率为85.1%~104%,测定值的RSD为0.56%~4.8%,符合ChP 2020四部9101分析方法验证指导原则中要求,表明该方法准确可靠,可以满足样品中22种元素杂质测定的要求;对于质控样,Pt未检出,Ni测定值在其认定值附近,其余20种元素杂质的测定值均在认定值的不确定度范围内,表明微波消解结合ICP-MS可以准确地测定小儿感冒颗粒中22种元素杂质的含量。

    按照试验方法分析31批样品,结果见表3

    表  3  样品分析结果
    Table  3.  Analytical results of the samples
    元素测定值w/(mg·kg−1平均值w/(mg·kg−1元素测定值w/(mg·kg−1平均值w/(mg·kg−1
    B0.823~11.23.72Se0.005~0.4200.066
    Al3.30~10950.3Sr3.06~30.611.9
    V0.002~0.5140.327Mo0.06~0.600.236
    Cr0.167~1.610.654Cd0.004~0.0290.010
    Mn2.81~32.311.8Sn0.016~0.1430.019
    Fe20.1~13680.9Sb0.105~0.4890.192
    Co0.137~0.6820.472Ba0.624~4.192.11
    Ni0.126~1.120.403Pt--
    Cu0.102~0.7170.356Hg0.003~0.0600.008
    Zn0.591~55.17.88Tl--
    As0.039~0.2850.103Pb0.017~0.0950.066 0
    下载: 导出CSV 
    | 显示表格

    结果显示:Al、Fe和Sr含量普遍偏高,这是由于:小儿感冒颗粒配方中9味药均来源于植物的根、叶,而Al是地壳中含量最高的金属元素,Sr是地壳中的重要元素之一[8],药材在生长周期中可能吸附了Al和Sr;小儿感冒颗粒的包材均是铝塑复合膜或者镀铝复合膜,Al可能会从包材迁移到样品中,该工作有待进行深层次的探讨。另外,研究表明Fe直接影响人对感染的抵抗力,幼儿上呼吸道反复感染与Fe缺乏关系密切[9],补Fe有助于提高免疫力,这就解释了小儿感冒颗粒中Fe含量高的原因。

    对来自华北地区、华东地区、华南地区、华中地区、西北地区、西南地区、东北地区的小儿感冒颗粒中的各元素杂质含量进行归类[10],不同区域中各元素杂质的平均值的分布曲线见图1

    图  1  各地区小儿感冒颗粒中22种元素杂质含量的分布曲线
    Figure  1.  Distribution curves of 22 elemental impurities in xiao'er ganmao granules from different regions

    图1可知,7个地区生产的小儿感冒颗粒中各元素杂质的含量虽有差异,但是呈现的变化趋势非常相似,说明不同生产企业和工艺生产的样品中元素杂质含量的差异不明显。

    按照公式(1)计算最大限量理论值(L)[11]

    L=ADI×WM×10×ATED×EF (1)

    式中:ADI为每日允许摄入量,mg·(kg·d)−1,其中B、Al、Cr(Ⅵ)、Cu、Zn、As、Se、Sr、Mo、Cd、Sn、Sb、Ba、Hg、Co、V的ADI参考美国环境保护署(EPA)公布的数据[0.2,1,0.005,0.02,0.3,0.005,0.005,2,0.06,0.000 5,0.3,1,0.2,0.002,0.03,0.01 mg·(kg·d)−1[12]](EPA并未公布总Cr数据,本工作以Cr(Ⅵ)的ADI计),Ni、Pb、Fe的ADI参考联合国粮农组织和世界卫生组织食品添加剂联合专家委员会公布数据[0.012,0.003 6,1.0 mg·(kg·d)−1[13-15]],Mn的ADI参考欧洲食品安全局建议欧盟成人Mn适宜摄入量[0.5 mg·(kg·d)−1[16]],Tl的ADI参考文献[17]提供的成人每天最高允许摄入Tl量2 μg[17]计算[0.000 03 mg·(kg·d)−1],Pt参考人用药品技术要求国际协调理事会(ICH)发布的ICH Q3D元素杂质指导原则规定的Pt的成人每日允许暴露量1 mg·d−1计算[0.016 7 mg·(kg·d)−1];W为人体平均体重,成人为60 kg,青少年儿童为32.7 kg[18];M为中成药每日最大摄入量(g),药品使用说明书提供的数据为48 g;ED为中成药中金属元素的暴露年限,以20 a计[19];EF为中成药中金属元素的每年暴露天数,以90 d·a−1[20];AT为平均寿命(d),结果为25 550 d(70 a,每年365 d)计。具体结果见表4

    表  4  22种元素杂质的最大限量理论值
    Table  4.  Theoretical maximum limit values of 22 elemental impurities
    元素L w/(mg·kg−1元素L w/(mg·kg−1元素L w/(mg·kg−1
    B193Cu19.3Sn290
    Al967Zn290Sb967
    V9.67As4.84Ba193
    Cr4.84Se4.84Pt16.1
    Mn483Sr1 934Hg1.93
    Fe967Mo58.0Tl0.029
    Co29.0Cd0.483Pb3.48
    Ni11.6
    下载: 导出CSV 
    | 显示表格

    结果显示,样品中各元素的含量均小于最大限量理论值,说明22种元素杂质的危害风险系数较低。

    ICH Q3D 元素杂质指导原则制定了24种元素杂质的日允许暴露量(PDE),中国为ICH成员,因此我国药物中元素杂质控制与研究也需要符合ICH Q3D的要求。ICH Q3D关于口服药的条款并未规定Al、Fe、B、Mn、Zn、Sr的PDE,1类(Pb、As、Hg、Cd)、2A类(Co、Mo、V、Se)、2B类(Tl、Pt)、3类(Ba、Cr、Cu、Sn、Sb、Ni)共16种元素杂质的PDE[21]表5,结合这16种元素杂质的PDE以及小儿感冒颗粒使用说明书提供的每日最大摄入量48 g计算小儿感冒颗粒口服限度,结果见表5

    表  5  样品中16种元素杂质的口服限度
    Table  5.  Oral limits of 16 elemental impurities in the sample
    元素PDE/(μg·d−1)口服限度w/(mg·kg−1元素PDE/(μg·d−1)口服限度w/(mg·kg−1
    V1202.50Cd50.104
    Cr1 10022.9Sn6 400133
    Co501.04Sb1 20025.0
    Ni60012.5Ba13 000271
    Cu1302.71Pt1 00020.8
    As150.312Hg400.833
    Se1703.54Tl80.167
    Mo1803.75Pb50.104
    下载: 导出CSV 
    | 显示表格

    结果表明,31批样品中As、Cd、Hg、Pb、Co、Mo、Se、V、Pt、Tl、Ba、Cr、Cu、Ni、Sb、Sn等16种元素杂质的含量均小于ICH Q3D规定的限度,表明小儿感冒颗粒样品元素杂质的健康风险较低。

    试验进一步采用EPA推荐的健康风险评估(HRA)模型[公式(2)~(4)][22]研究了小儿感冒颗粒中元素杂质对人体健康造成危害的概率及范围。其中:ADD为日暴露量,mg·(kg·d)−1;C为样品中元素的平均值,mg·kg−1;HQ为危害系数;HI为综合危害指数。其余参数同公式(1)。

    ADD=M×CW×1 000 (2)
    HQ=ADDADI (3)
    HI=i=1nHQ (4)

    当HQ(HI)≤1时,表明元素杂质的健康风险较低,对人体健康不会造成明显影响;当HQ(HI)>1时,表明元素杂质存在一定健康风险,且HQ(HI)越大,健康风险越大,应予以关注[23]。其中,一批样品中各元素杂质的危害系数见表6

    表  6  样品中元素杂质的危害系数
    Table  6.  Hazard coefficients of elemental impurities in the sample
    元素HQ元素HQ元素HQ
    B0.027 3Cu0.026 1Sn0.000 1
    Al0.073 8Zn0.038 6Sb0.000 3
    V0.048 0As0.030 2Ba0.015 5
    Cr0.192 0Se0.019 4Pt0
    Mn0.034 6Sr0.008 7Hg0.005 9
    Fe0.118 8Mo0.005 8Tl0
    Co0.023 1Cd0.029 4Pb0.026 9
    Ni0.049 3
    下载: 导出CSV 
    | 显示表格

    表6可知,22种元素的HQ均小于1,表明小儿感冒颗粒中22种元素不会对人体健康造成明显影响,HQ由大到小的元素排序为Cr、Fe、Al、Ni、V、Zn、Mn、As、Cd、B、Pb、Cu、Co、Se、Ba、Sr、Hg、Mo、Sb、Sn、Tl/Pt。22种元素杂质的HI为0.773 8,小于1,但其值较高,其中Cr、Fe、Al和Ni的贡献率较高,但ChP 2020均未规定其检验方法和限量要求。参考上述方法,试验又统计了31批样品中22种元素杂质的HQ,所得HQ均小于1,HI为0.398~0.982,其中HI高于0.7的有16批,占比51.6%,说明样品可能存在潜在的元素杂质污染风险,应予以持续监控。

    本工作采用ICP-MS测定小儿感冒颗粒中22种元素杂质的含量,方法准确、简便、灵敏度高,适用于小儿感冒颗粒中22种元素杂质的测定。采用该方法测定了31批小儿感冒颗粒样品中22种元素杂质的含量,元素含量均小于最大限量理论值,同时均满足ICH Q3D规定的元素杂质口服限度要求;采用危害系数、综合危害指数评估了样品的用药风险,发现样品可能存在潜在的元素杂质污染风险。本方法可为小儿感冒颗粒的安全性评价提供新的研究思路和数据参考。

  • 图  1   各地区小儿感冒颗粒中22种元素杂质含量的分布曲线

    Figure  1.   Distribution curves of 22 elemental impurities in xiao'er ganmao granules from different regions

    表  1   线性参数、检出限和测定下限

    Table  1   Linearity parameters, detection limits and lower limits of determination

    元素线性回归方程线性范围ρ/(μg·L−1)相关系数检出限w/(mg·kg−1)测定下限w/(mg·kg−1)
    By=8.158×10x+1.579×10310~1 0000.999 90.1050.350
    Aly=2.677×102x+3.823×10410~1 0000.999 40.4011.34
    Vy=9.164×103x+1.671×1030.2~1000.999 90.0020.007
    Cry=1.298×104x+2.868×1030.2~1001.0000.0020.007
    Mny=8.083×103x+1.996×10310~1 0000.999 80.0140.047
    Fey=3.072×102x+3.426×10310~1 0000.999 90.1980.660
    Coy=2.756×104x+8.688×1020.2~1000.999 00.0270.094
    Niy=5.758×103x+2.565×10310~1 0000.999 90.0250.083
    Cuy=1.477×104x+5.536×10310~1 0000.999 80.0110.037
    Zny=2.282×103x+2.116×10410~1 0000.999 90.1020.340
    Asy=9.588×102x+4.909×100.2~1000.999 90.0170.057
    Sey=2.440×10x10~1 0001.0000.0050.016
    Sry=4.687×103x+8.725×10310~1 0001.0000.0470.157
    Moy=5.376×103x+1.997×1020.2~1001.0000.0020.007
    Cdy=4.300×103x+3.775×100.2~1001.0000.0030.010
    Sny=9.602×103x+2.561×1030.2~1001.0000.0160.053
    Sby=9.567×103x+2.117×1020.2~1001.0000.0020.007
    Bay=4.338×103x+2.347×1030.2~1001.0000.0260.087
    Pty=2.471×104x+6.962×1020.2~100.999 00.0010.003
    Hgy=1.615×104x+5.768×1020.1~50.999 80.0030.010
    Tly=1.068×105x+1.459×1020.2~1001.0000.0010.003
    Pby=7.889×104x+2.448×1040.2~1000.999 90.0080.027
    下载: 导出CSV

    表  2   准确度试验结果

    Table  2   Results of test for accuracy

    元素低加标量中加标量高加标量质控样w/(mg·kg−1)
    回收率/%RSD/%回收率/%RSD/%回收率/%RSD/%认定值测定值
    B92.42.294.41.693.92.832±331.8,33.1,31.1
    Al90.73.889.32.995.41.81 150±1001.17×103,1.14×103,1.10×103
    V88.44.895.13.392.83.71.16±0.131.10,1.07,1.18
    Cr85.23.893.82.791.82.41.25±0.111.28,1.17,1.23
    Mn91.81.397.30.5696.21.430.5±1.530.1,29.7,30.7
    Fe86.83.294.32.992.12.6480±30475,491,484
    Co85.13.288.74.393.62.70.23±0.060.221,0.252,0.255
    Ni93.21.195.91.896.31.81.1*1.01,0.995,1.06
    Cu90.32.692.42.291.81.36.6±0.56.51,6.62,6.46
    Zn88.51.492.62.291.12.718±218.5,17.8,18.7
    As89.52.496.71.194.31.81.1±0.21.07,1.12,1.16
    Se85.13.597.12.293.52.40.17±0.030.173,0.164,0.181
    Sr92.51.297.80.9796.11.4170±10173,165,171
    Mo95.71.197.81.298.30.790.20±0.010.202,0.195,0.204
    Cd92.92.798.32.896.51.70.17±0.020.173,0.168,0.165
    Sn86.83.588.93.393.43.03.8±0.53.68,3.52,3.74
    Sb93.12.291.71.995.71.50.20±0.060.212,0.197,0.208
    Ba92.41.495.91.896.31.398±696.9,98.4,99.3
    Pt90.92.696.13.493.24.3-
    Hg88.22.893.60.9392.21.10.150±0.020.148,0.152,0.155
    Tl95.32.494.11.896.51.40.06±0.0080.058,0.060,0.059
    Pb1044.892.93.990.73.29.7±0.99.57,9.82,9.66
    下载: 导出CSV

    表  3   样品分析结果

    Table  3   Analytical results of the samples

    元素测定值w/(mg·kg−1平均值w/(mg·kg−1元素测定值w/(mg·kg−1平均值w/(mg·kg−1
    B0.823~11.23.72Se0.005~0.4200.066
    Al3.30~10950.3Sr3.06~30.611.9
    V0.002~0.5140.327Mo0.06~0.600.236
    Cr0.167~1.610.654Cd0.004~0.0290.010
    Mn2.81~32.311.8Sn0.016~0.1430.019
    Fe20.1~13680.9Sb0.105~0.4890.192
    Co0.137~0.6820.472Ba0.624~4.192.11
    Ni0.126~1.120.403Pt--
    Cu0.102~0.7170.356Hg0.003~0.0600.008
    Zn0.591~55.17.88Tl--
    As0.039~0.2850.103Pb0.017~0.0950.066 0
    下载: 导出CSV

    表  4   22种元素杂质的最大限量理论值

    Table  4   Theoretical maximum limit values of 22 elemental impurities

    元素L w/(mg·kg−1元素L w/(mg·kg−1元素L w/(mg·kg−1
    B193Cu19.3Sn290
    Al967Zn290Sb967
    V9.67As4.84Ba193
    Cr4.84Se4.84Pt16.1
    Mn483Sr1 934Hg1.93
    Fe967Mo58.0Tl0.029
    Co29.0Cd0.483Pb3.48
    Ni11.6
    下载: 导出CSV

    表  5   样品中16种元素杂质的口服限度

    Table  5   Oral limits of 16 elemental impurities in the sample

    元素PDE/(μg·d−1)口服限度w/(mg·kg−1元素PDE/(μg·d−1)口服限度w/(mg·kg−1
    V1202.50Cd50.104
    Cr1 10022.9Sn6 400133
    Co501.04Sb1 20025.0
    Ni60012.5Ba13 000271
    Cu1302.71Pt1 00020.8
    As150.312Hg400.833
    Se1703.54Tl80.167
    Mo1803.75Pb50.104
    下载: 导出CSV

    表  6   样品中元素杂质的危害系数

    Table  6   Hazard coefficients of elemental impurities in the sample

    元素HQ元素HQ元素HQ
    B0.027 3Cu0.026 1Sn0.000 1
    Al0.073 8Zn0.038 6Sb0.000 3
    V0.048 0As0.030 2Ba0.015 5
    Cr0.192 0Se0.019 4Pt0
    Mn0.034 6Sr0.008 7Hg0.005 9
    Fe0.118 8Mo0.005 8Tl0
    Co0.023 1Cd0.029 4Pb0.026 9
    Ni0.049 3
    下载: 导出CSV
  • [1] 张乔柔,曹云,田英,等. 学龄期儿童重金属暴露水平与其体格发育相关指标的关联性研究[J]. 环境与职业医学,2022,39(2):127-132.

    ZHANG Q R ,CAO Y ,TIAN Y ,et al. Association between heavy metal exposure level and physical development indicators among school-age children[J]. Journal of Environmental and Occupational Medicine,2022,39(2):127-132.

    [2] RAHMAN M A ,KUMAR S ,MOHANA A A ,et al. Coliform bacteria and trace metals in drinking water,southwest Bangladesh:Multivariate and human health risk assessment[J]. International Journal of Environmental Research,2019,13(2):395-408.
    [3] MENEZES-FILHO J A ,NOVAES C D O ,MOREIRA J C ,et al. Elevated manganese and cognitive performance in school-aged children and their mothers[J]. Environmental Research,2011,111(1):156-163.
    [4] 严倩茹,邬伟魁,刘志辉,等. ICP-MS法测定儿童用药中4种重金属元素[J]. 中国药物评价,2018,35(4):271-273.

    YAN Q R ,WU W K ,LIU Z H ,et al. Determination of 4 kinds of metal elements in common pediatric drugs by ICP-MS[J]. Chinese Journal of Drug Evaluation,2018,35(4):271-273.

    [5] 王小如. 电感耦合等离子体质谱应用实例[M]. 北京:化学工业出版社,2005.

    WANG X R. Application example of inductively coupled plasma mass spectrometry[M]. Beijing:Chemical Industry Press,2005.

    [6] 朱俐,赵瑜,肖超强,等. 电感耦合等离子体质谱法测定盐酸头孢卡品酯颗粒中9种元素杂质的含量[J]. 理化检验-化学分册,2022,58(5):512-516.

    ZHU L ,ZHAO Y ,XIAO C Q ,et al. Determination of 9 elemental impurities in cefcapene pivoxil hydrochloride granules by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2022,58(5):512-516.

    [7] 陈仕云,陆子凡,桂双英,等. 微波消解-电感耦合等离子体质谱法测定盐酸文拉法辛缓释片中10种元素杂质的含量[J]. 理化检验-化学分册,2023(5):543-546.

    CHEN S Y ,LU Z F ,GUI S Y ,et al. Determination of 10 elements impurities in venlafaxine hydrochloride sustained-release tablets by microwave digestion-inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2023(5):543-546.

    [8] 曹劼,闫钰,于瑞莲,等. 水稻田垂直剖面土壤稀土元素来源解析及生态风险评价——基于锶钕同位素示踪结合MixSIAR模型[J]. 中国环境科学,2023,43(6):3002-3012.

    CAO J ,YAN Y ,YU R L ,et al. Source apportionment and ecological risk assessment of rare earth elements in vertical profiles of paddy soils—Based on strontium and neodymium isotope tracing combined with MixSIAR model[J]. China Environmental Science,2023,43(6):3002-3012.

    [9] 齐会婷,龚柯,袁淑莉. 婴幼儿反复呼吸道感染与血清相关微量元素水平的关系[J]. 河南医学研究,2022,31(10):1835-1838.

    QI H T ,GONG K ,YUAN S L. Relationship between recurrent respiratory tract infection and serum related trace elements in infants[J]. Henan Medical Research,2022,31(10):1835-1838.

    [10] 代磊,李艳,侯媛芳,等. 电感耦合等离子体质谱法结合化学计量学分析六味地黄丸中23种元素[J]. 理化检验-化学分册,2023,59(7):798-805.

    DAI L ,LI Y ,HOU Y F ,et al. Analysis of 23 elements in Liuwei Dihuang pills by inductively coupled plasma mass spectrometry with chemometrics[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2023,59(7):798-805.

    [11] 左甜甜,张磊,王莹,等. 中药材及饮片中重金属及有害元素限量制定的探讨[J]. 药物分析杂志,2020,40(4):688-693.

    ZUO T T ,ZHANG L ,WANG Y ,et al. Exploration of the limit of heavy metals and harmful elements in Chinese medicinal materials and decoction pieces[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(4):688-693.

    [12] Centers for Disease Control and PreventionRegional screening levels (RSLs)—Generic tables(October 2024)2023-12-02 https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspxCenters" target="_blank"> https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspxCenters for Disease Control and Prevention. Regional screening levels (RSLs)—Generic tables(October 2024)[EB/OL].[2023-12-02]. https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx
    [13] 王艳敏,周鸿,熊丽,等. 江西省食品中镍含量调查与健康风险评估[J]. 现代预防医学,2020,47(15):2724-2728.

    WANG Y M ,ZHOU H ,XIONG L ,et al. Nickel content of food and health risk assessment of dietary nickel,Jiangxi[J]. Modern Preventive Medicine,2020,47(15):2724-2728.

    [14] 任洁,杨丽琛. 铁可耐受最高摄入量制定的研究进展[J]. 卫生研究,2013,42(2):323-326.

    REN J ,YANG L C. Research progress on the formulation of iron tolerance maximum intake[J]. Journal of Hygiene Research,2013,42(2):323-326.

    [15] 赵霞,康帅,梁瑞强,等. 微波消解-电感耦合等离子体质谱法测冰黄肤乐软膏中的6种重金属的量[J]. 中成药,2021,43(2):514-517.

    ZHAO X ,KANG S ,LIANG R Q ,et al. Determination of six heavy metals in Binghuang Fule ointment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Chinese Traditional Patent Medicine,2021,43(2):514-517.

    [16] 李岩,霍军生. 锰的适宜摄入量研究进展[J]. 卫生研究,2022,51(4):532-535.

    LI Y ,HUO J S. Research progress on suitable intake of manganese[J]. Journal of Hygiene Research,2022,51(4):532-535.

    [17] 孙艺嘉. 铊的环境地球化学分析研究及铊污染的防治对策探讨[J]. 科技视界,2019(10):95-96.

    SUN Y J. Environmental geochemical analysis of thallium and discussion on prevention and control countermeasures of thallium pollution[J]. Science & Technology Vision,2019(10):95-96.

    [18] 孙清斌,尹春芹,邓金锋,等. 大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J]. 环境化学,2013,32(4):671-677.

    SUN Q B ,YIN C Q ,DENG J F ,et al. Characteristics of soil-vegetable pollution of heavy metals and health risk assessment in Daye mining area[J]. Environmental Chemistry,2013,32(4):671-677.

    [19] 毛伟峰,王彝白纳,左甜甜,等. 我国居民中药材中铅暴露的风险评估[J]. 中国药品标准,2018,19(4):275-281.

    MAO W F ,WANG Y B N ,ZUO T T ,et al. Risk assessment of lead exposure of Chinese medicinal herbs in Chinese population[J]. Drug Standards of China,2018,19(4):275-281.

    [20] 王彝白纳,金红宇,张磊. 11省成年消费者中药食用情况调查分析[J]. 云南中医学院学报,2017,40(2):71-75.

    WANG Y B N ,JIN H Y ,ZHANG L. The situation investigation of traditional Chinese medicine adult consumers in 11 provinces of China[J]. Journal of Yunnan University of Traditional Chinese Medicine,2017,40(2):71-75.

    [21] The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human UseGuideline for elemental impurities:ICH Q3D(R2)2022-04-24 https://database.ich.org/sites/default/files/Q3D-R2_Guideline_Step4_2022_0308.pdfThe" target="_blank"> https://database.ich.org/sites/default/files/Q3D-R2_Guideline_Step4_2022_0308.pdfThe International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use.Guideline for elemental impurities:ICH Q3D(R2)[EB/OL].[2022-04-24]. https://database.ich.org/sites/default/files/Q3D-R2_Guideline_Step4_2022_0308.pdf.
    [22] 袁秀泽,黄招光,朱建蒙,等. 加味藿香正气丸中5种重金属残留量测定及风险评估[J]. 中成药,2021,43(12):3536-3539.

    YUAN X Z ,HUANG Z G ,ZHU J M ,et al. Determination and risk assessment of five heavy metals residues in Jiawei Huoxiang Zhengqi pills[J]. Chinese Traditional Patent Medicine,2021,43(12):3536-3539.

    [23] 聂黎行,钱秀玉,蒋沁悦,等. 中成药中重金属及有害元素残留分析、风险评估和限量制定建议[J]. 药学学报,2020,55(11):2695-2701.

    NIE L X ,QIAN X Y ,JIANG Q Y ,et al. Analysis and health risk assessment,including recommendation of limits for heavy metals and harmful elements in Chinese patent medicines[J]. Acta Pharmaceutica Sinica,2020,55(11):2695-2701.

图(1)  /  表(6)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  0
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-02
  • 刊出日期:  2025-02-17

目录

/

返回文章
返回