• 中文核心期刊
  • CSCD收录期刊
  • 《高质量科技期刊分级目录》收录期刊
  • 中国机械工程学会理化检验分会会刊
高级检索

FeS2/还原氧化石墨烯复合物修饰碳布电极所制微生物燃料电池阳极的产电性能研究

马建春, 石楠, 吕闰生, 武莉洁, 韦佳乐, 张叶臻, 张军, 贾建峰

马建春, 石楠, 吕闰生, 武莉洁, 韦佳乐, 张叶臻, 张军, 贾建峰. FeS2/还原氧化石墨烯复合物修饰碳布电极所制微生物燃料电池阳极的产电性能研究[J]. 理化检验-化学分册, 2024, 60(11): 1110-1118. DOI: 10.11973/lhjy-hx240337
引用本文: 马建春, 石楠, 吕闰生, 武莉洁, 韦佳乐, 张叶臻, 张军, 贾建峰. FeS2/还原氧化石墨烯复合物修饰碳布电极所制微生物燃料电池阳极的产电性能研究[J]. 理化检验-化学分册, 2024, 60(11): 1110-1118. DOI: 10.11973/lhjy-hx240337
MA Jianchun, SHI Nan, LÜ Runsheng, WU Lijie, WEI Jiale, ZHANG Yezhen, ZHANG Jun, JIA Jianfeng. Electric Production Performance of Microbial Fuel Cell Anode Prepared by FeS2/ Reduced Graphene Oxide Compound Modified Carbon Cloth Electrode[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2024, 60(11): 1110-1118. DOI: 10.11973/lhjy-hx240337
Citation: MA Jianchun, SHI Nan, LÜ Runsheng, WU Lijie, WEI Jiale, ZHANG Yezhen, ZHANG Jun, JIA Jianfeng. Electric Production Performance of Microbial Fuel Cell Anode Prepared by FeS2/ Reduced Graphene Oxide Compound Modified Carbon Cloth Electrode[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2024, 60(11): 1110-1118. DOI: 10.11973/lhjy-hx240337

FeS2/还原氧化石墨烯复合物修饰碳布电极所制微生物燃料电池阳极的产电性能研究

基金项目: 

山西省基础研究计划(自由探索类)青年项目 202303021222257

吕梁市引进高层次科技人才重点研发项目 2022RC16

山西省高等学校教学改革创新项目 J20221135

详细信息
    作者简介:

    马建春,副教授,博士,主要从事微生物燃料电池阳极修饰材料的制备及其产电性能方面的研究工作,singermajianchun@126.com

  • 中图分类号: O657.1;TM911.45

Electric Production Performance of Microbial Fuel Cell Anode Prepared by FeS2/ Reduced Graphene Oxide Compound Modified Carbon Cloth Electrode

  • 摘要:

    调整氨水用量(30,50,100,150 μL),以氯化铁和还原氧化石墨烯(rGO)为主要原料采用水热法合成4种二硫化亚铁/rGO复合物[FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO、FeS2(150)/rGO)],滴涂在碳布电极表面制备FeS2/rGO修饰碳布电极。以修饰碳布电极构建微生物燃料电池(MFCs)阳极,并在阳极溶液中添加活性大肠杆菌培养液,用作MFCs生物催化剂;以碳纸小片构建MFCs阴极,和阳极构成双室型MFCs,以考察MFCs的产电性能。结果表明,FeS2/rGO为呈薄纳米片层结构的rGO与呈片状的白铁矿FeS2和黄铁矿FeS2的混合物或呈八面体结构的黄铁矿FeS2自组装形成的微球,以其修饰碳布电极制成MFCs阳极后,产电功率得到不同程度的提高,其中以FeS2(50)/rGO制得的MFCs阳极在1.0 mV·s−1扫描速率下的最大功率密度可达2 984.8 mW·m−2,是rGO以及裸碳布所构建MFCs阳极的1.7倍和2.5倍。循环伏安和电化学阻抗谱测试结果显示,FeS2(50)/rGO修饰的碳布电极的电活性面积较大,FeS2(50)/rGO和活性大肠杆菌间的胞外电子转移效率较高,二者协同作用,提升了MFCs的功率密度。

    Abstract:

    By adjusting the amount (30, 50, 100, 150 μL) of aqueous ammonia, 4 composites composed by iron disulfide and reduced graphene oxide (rGO) [FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO)] were synthesized by hydrothermal method with ferric chloride and rGO as the main raw materials. The composite was dropped onto the surface of carbon cloth electrode to prepare FeS2/rGO modified carbon cloth electrode. MFCs anode was constructed by the modified carbon cloth electrode, and the active Escherichia coli culture medium was added into the anode solution as MFCs anode biocatalyst. MFCs cathode was constructed with carbon paper flakes, and dual-chamber MFCs were formed combined with anodes, to investigate the electric production performance of MFCs. It was shown that FeS2/rGO was the self-assembled microsphere consisting with thin nanosheet structured rGO and a mixture of sheet-like marcasite FeS2 and pyrite FeS2 or a octahedral pyrite FeS2. After modifying the carbon cloth electrode with FeS2/rGO, the power generation of MFCs anode was improved to varying degrees. Among them, the maximum power density of MFCs anode made of FeS2(50)/rGO at a scan rate of 1.0 mV·s−1 could reach 2 984.8 mW·m−2, which was 1.7 times and 2.5 times than that of MFCs anode made of rGO or bare carbon cloth, respectively. As found by results of tests of cyclic voltammetry and electrochemical impedance spectroscopy, the carbon cloth electrode modified by FeS2(50)/rGO had a larger electroactive area, and the extracellular electron transfer efficiency between FeS2 (50)/rGO and active Escherichia coli was higher. The synergistic effect of the two improved the power density of MFCs.

  • 现今能源危机和环境污染已经成为全球关注的重大问题,开发经济实用、绿色环保的新能源迫在眉睫。微生物燃料电池(MFCs)是一种清洁可再生、环保无污染的新型绿色能源[1-4]。MFCs有别于传统的燃料电池,它能将活性细菌用作生物催化剂,将生物质或有机质中的化学能转为电能[5-11]。MFCs在净化生活废水时又能产电,完全符合绿色能源要求,是一种极具潜力的新型能源技术[12-13]。但是,MFCs的输出功率仍然与规模化应用存在一定差距,因此如何提高产电性能已经成为MFCs的研究重点[14-16]

    影响MFCs产电功率的因素有很多,主要包括电池构型、活性微生物种类、阳极修饰材料等[17-19]。其中,阳极修饰材料作为活性微生物的附着地,直接决定着阳极电极和活性微生物间的胞外电子转移效率,因此设计和制备合适的阳极修饰材料对MFCs产电功率的提高具有重要意义。近年来,随着纳米材料和纳米技术的快速发展,碳材料及其复合材料、金属纳米颗粒、导电聚合物等已用作MFCs的阳极修饰物[20-27]。归纳这些阳极修饰物提高MFCs产电功率的策略,主要包括以下3点:纳米材料修饰能增大阳极比表面积或复合材料的生物相容性,从而增加活性细菌的附着量;纳米材料改性了阳极表面特性,从而增强了阳极电催化剂与活性细菌之间的相互作用;纳米材料修饰可增加阳极导电性能,从而提高阳极和活性细菌间的电子转移速率[28-29]。考虑到还原氧化石墨烯(rGO)因具有优异的物理性质和化学性质可用作MFCs的阳极修饰材料[30]以及二硫化亚铁(FeS2)含量丰富、易得且活性细菌能够利用Fe 3d轨道作为电子传输通道[31-32]等,本工作将rGO和FeS2复合制备FeS2/rGO,利用二者协同优势提高MFCs的产电性能[19]。其中,基于文献[19]采用水热法制备了FeS2/rGO,并通过调整氨水加入量制备了4种复合物,考察了其物相组成、微观形貌、成分特征、电化学性能等,以期为绿色能源的开发提供技术支撑。

    CHI760e型电化学工作站;LC-KH-100型高压反应釜;DZF-6020型真空干燥箱;GHP-9080型隔水式恒温培养箱;Quintix-124-1CN型电子天平;JSM-7500F型扫描电子显微镜(SEM);Ultima IV-185型X射线衍射仪(XRD);X-MaxN TSR型能谱仪(EDS);K-AlPHA+型X射线光电子能谱仪(XPS)。

    活性大肠杆菌菌株购自苏州北纳创联生物技术有限公司,型号为133264,为冻干物;除特别说明外,试验所用试剂均为分析纯;试验用水为超纯水。

    在5.6 g·L−1 rGO溶液中依次加入135 g·L−1 氯化铁溶液20 mL、38 g·L−1 硫脲溶液20 mL和28%(质量分数)氨水溶液30 µL,超声1 h,超声过程中适当加冰使水温保持在25 ℃以下。将超声后的溶液转移至高压反应釜(100 mL),氯化铁提供铁源,硫脲提供硫源,于180 ℃反应20 h。待反应釜自然冷却到室温后,抽滤,并用水洗涤沉淀,反复抽滤洗涤直至滤液澄清。沉淀置于真空干燥箱中,于80 ℃烘8 h至干,得到FeS2(30)/rGO。改变氨水加入量为50,100,150 µL,其他试验步骤同上述方法,制备FeS2(50)/rGO、FeS2(100)/rGO、FeS2(150)/rGO。采用SEM、XRD、EDS、XPS对制备的4种FeS2/rGO进行表征。

    将碳布切割成1.0 cm×1.0 cm的小块,依次放入1.0 mol·L−1 氢氧化钾溶液、水、1.0 mol·L−1 盐酸溶液、水中浸泡1 h,用水充分洗涤后于60 ℃真空干燥8 h。将预处理后的碳布小块用铜丝连接(将铜丝一端插入碳布),接口用AB胶遮蔽 (以免裸露的铜影响大肠杆菌的活性),在红外灯下低温晾干,制得裸碳布电极,备用。

    依次称取2.0 mg真空干燥后的FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO粉末,置于4个样品瓶中,加入含0.1%(质量分数)Nafion的乙醇溶液各400 µL,超声30 min制备悬浊液。滴涂到裸碳布电极的两面,每面滴涂200 µL,并在红外灯下低温晾干,即制成了FeS2/rGO修饰碳布电极,备用。

    以上述制备的FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰的碳布电极作为MFCs阳极,同时以rGO修饰碳布电极和裸碳布电极作为对照MFCs阳极。将030N型碳纸分割成2.0 cm×2.0 cm的小块,依次在1.0 mol·L−1盐酸溶液、水、1.0 mol·L−1氢氧化钾溶液、水中放置1 h,用水洗涤多次后置于真空烘箱中,于60 ℃干燥6 h。将预处理的碳纸小块用铜丝连接,接口露铜处用AB胶遮蔽,作为MFCs阴极。

    在超净台上进行活性大肠杆菌的培养,所用器具使用前均用手提式高压蒸汽不锈钢锅灭菌。具体步骤:大肠杆菌菌株先在37 ℃(大肠杆菌最适宜生长温度)隔水式恒温培养箱的斜面营养琼脂固体培养基上培养24 h,之后再用营养肉汤在隔水式恒温(37 ℃)培养箱中培养20 h,得到活性大肠杆菌培养液,用作MFCs阳极生物催化剂。

    组装双室型MFCs。以50 mL 磷酸盐缓冲溶液(pH 7.0)作为MFCs阳极溶液,内含10.0 g·L−1葡萄糖、5.0 g·L−1酵母浸膏、5 mmol·L−1 HNQ (2-羟基-1,4-萘醌) 和20 mL活性大肠杆菌培养液,在阳极溶液中通50 min高纯氮气,以驱除其中的溶解氧和驯化活性菌,之后用封口膜密封MFCs阳极室。以含70 mmol·L−1 K3[Fe(CN)6]的0.1 mol·L−1 氯化钾溶液作为MFCs阴极溶液。在MFCs阴极和阳极间连接一个1 000 Ω的小型电阻构成闭合回路,并通过NI6009电压测试卡测量MFCs外电阻两侧的电压。

    以MFCs阳极作工作电极,MFCs阴极作对电极和参比电极,从开路电压扫描至电压为0,扫描速率为1.0 mV·s−1,当电压测试卡上显示MFCs电压达到峰值且基本稳定后,通过电化学工作站测试电化学线性扫描伏安(LSV)曲线。电池功率P通过P=UIU为电压,I为电流)计算,再计算电池功率密度(P与MFCs阳极几何面积的比值)和电流密度(I与MFCs阳极几何面积的比值),最后用Origin软件绘制功率密度曲线。

    以FeS2/rGO修饰碳布电极作工作电极,铂片作对电极,Ag/AgCl电极作参比电极,在电压范围−0.6~1.2 V、扫描速率0.1 V·s−1下进行循环伏安(CV)测试。

    以MFCs阳极作工作电极,MFCs阴极作参比电极和对电极,在开路电压、频率范围0.1~100 kHz、电压振幅5 mV下进行电化学阻抗谱(EIS)测试。

    rGO、FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO的XRD图如图1所示。

    图  1  rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和 FeS2(150)/rGO(对应曲线a~e)的XRD图
    Figure  1.  XRD patterns of rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO and FeS2(150)/rGO (showing by curves of a‒e)

    图1可知:26.0°附近的驼峰型衍射峰对应rGO的(002)晶面(曲线a),复合材料中也可观察到相应衍射峰(曲线b,c,d,e);在曲线b,c,e中25.9°,33.2°,37.3°,38.9°,47.6°,52.0°,57.8°处观察到明显衍射峰,对应白铁矿FeS2 (JCPDS卡编号74-1051),在28.5°,33.0°,37.1°,40.7°,47.4°,56.0°处观察到的衍射峰对应黄铁矿FeS2 (JCPDS卡编号42-1340),以上结果说明FeS2(30)/rGO、FeS2(50)/rGO及FeS2(150)/rGO是白铁矿FeS2和黄铁矿FeS2的混合物与rGO复合而成的;在曲线d中,28.5°,33.0°,37.1°,40.7°,47.4°,56.2°,59.0°,61.7°,64.2°处观察到尖锐的衍射峰,说明FeS2/rGO(100)对应纯相黄铁矿FeS2 (JCPDS卡编号42-1340)。以上结果说明,FeS2/rGO复合物已成功制备。

    FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO、FeS2(150)/rGO和裸碳布的形貌表征结果如图2所示。

    图  2  FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO、FeS2(150)/rGO和裸碳布的SEM图
    Figure  2.  SEM images of FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, FeS2(150)/rGO and bare carbon cloth

    图2可知:FeS2(30)/rGO中rGO薄纳米片层与呈片状结构的物质自组装形成了微球,结合其SEM-EDS mapping(图3)和XRD结果,说明自组装微球是含有白铁矿和黄铁矿两种晶相的FeS2微球;FeS2(50)/rGO结构和FeS2(30)/rGO的类似,但其微球片层较薄,片与片之间有较多间隙,结合其SEM-EDS mapping(图4)以及XRD结果,也能得出和FeS2(30)/rGO类似的结论;FeS2(100)/rGO中有片层的rGO以及八面体构型的其他物质,且八面体构型的物质表面有一些稍微凸起的泡泡,结合其SEM-EDS mapping(图5)和XRD结果,说明具有八面体构型的物质是黄铁矿FeS2纯相;FeS2(150)/rGO中也有片层的rGO和自组装的FeS2微球,但是微球片层较厚;裸碳布表面较为平整,有利于复合材料的修饰。

    图  3  FeS2(30)/rGO的EDS和SEM-EDS mapping图
    Figure  3.  EDS and SEM-EDS mapping images of FeS2(30)/rGO
    图  4  FeS2(50)/rGO的 EDS和SEM-EDS mapping图
    Figure  4.  EDS and SEM-EDS mapping images of FeS2(50)/rGO
    图  5  FeS2(100)/rGO的EDS和SEM-EDS mapping图
    Figure  5.  EDS and SEM-EDS mapping images of FeS2(100)/rGO

    rGO和FeS2(50)/rGO的XPS谱图如图6所示。

    图  6  rGO和FeS2(50)/rGO的XPS全谱图以及FeS2(50)/rGO中Fe 2p与S 2p 的XPS谱图
    Figure  6.  XPS full spectra of rGO and FeS2(50)/rGO as well as XPS spectra of Fe 2p and S 2p in FeS2(50)/rGO

    图6可知:FeS2(50)/rGO中含有硫、碳、氮、氧和铁元素,而rGO中只有碳、氮、氧元素;在FeS2(50)/rGO的Fe 2p谱图中,709.0,720.0 eV附近出现FeS2中Fe 2p3/2与Fe 2p1/2的XPS谱峰[33];在FeS2(50)/rGO的S 2p谱图中,162.5,163.9 eV附近出现FeS2的S 2p3/2与S 2p1/2的XPS谱峰[33],同时164.9 eV处出现的谱峰可能是硫原子进入rGO片层所致[34]。上述结果和XRD结果一致。

    裸碳布电极以及rGO、FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的电压-时间曲线如图7所示。

    图  7  裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO、FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的电压-时间运行图
    Figure  7.  Voltage-time operation plots of MFCs with bare carbon cloth electrode and carton cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as anodes

    图7可知,相较其他材料,以FeS2(50)/rGO修饰碳布电极作为阳极时MFCs能够达到更高的电压。

    在1.0 mV·s−1扫描速率下裸碳布电极及不同材料修饰碳布电极作为阳极时MFCs的功率密度曲线如图8所示。

    图  8  裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的功率密度曲线
    Figure  8.  Power density curves of MFCs with bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as anodes

    图8可知:裸碳布电极、rGO和4种FeS2/rGO修饰碳布电极作为阳极时MFCs的最大功率密度分别为1 192.6,1 749.5,2 542.8,2 984.8,2 306.3,1 877.6 mW·m−2,4种复合物修饰碳布电极作为阳极时MFCs的最大功率密度明显高于rGO修饰碳布电极与裸碳布电极的,其中FeS2(50)/rGO修饰碳布电极作为阳极时MFCs的功率密度最高,分别是FeS2(30)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的1.17,1.29,1.59倍。

    为探究FeS2(50)/rGO修饰碳布电极作为阳极时MFCs的功率密度较高的原因,对裸碳布电极以及rGO、FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极进行CV测试,结果如图9所示。

    图  9  裸碳布电极以及rGO、 FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极的CV响应曲线
    Figure  9.  CV response curves of bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO and FeS2(150)/rGO

    图9可知:4种FeS2/rGO修饰碳布电极的电容明显高于裸碳布电极的,其中FeS2(50)/rGO修饰碳布电极的电容最大,推测FeS2/rGO复合物有效增加了碳布电极的电活性面积,而大的电活性面积有利于活性大肠杆菌的黏附,从而提高了MFCs的产电性能[21]

    按照1.5.3节条件对裸碳布电极以及rGO、FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为MFCs阳极进行EIS测试,结果如图10所示。

    图  10  裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为MFCs阳极的EIS图
    Figure  10.  EIS plots of bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as MFCs anodes

    EIS图中高频区的半圆可反映活性大肠杆菌和阳极电极界面的电荷转移阻抗Rct[35-36]。由图10可知,裸碳布电极作为MFCs阳极的Rct较大,FeS2(50)/rGO修饰碳布电极作为MFCs阳极的Rct较小,说明FeS2(50)/rGO和活性大肠杆菌间的胞外电子转移效率较高,和2.2.2节中FeS2(50)/rGO的大电活性面积发挥协同优势作用,使FeS2(50)/rGO修饰碳布电极作为阳极的MFCs具有较大的功率密度。

    本工作通过调整氨水用量,采用水热法制备了4种FeS2/rGO,并用作MFCs的阳极修饰材料。相较裸碳布电极作为MFCs阳极,4种FeS2/rGO修饰碳布电极作为阳极时MFCs的最大功率密度都有不同程度地提高,其中FeS2(50)/rGO修饰碳布电极作为阳极的MFCs展现出较大的电活性面积以及较高的胞外电子转移速率,使其功率密度较大,在1.0 mV·s−1扫描速率下的最大功率密度达到2 984.8 mW·m−2,这为制备高性能MFCs阳极材料提供了一定借鉴作用。

  • 图  1   rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和 FeS2(150)/rGO(对应曲线a~e)的XRD图

    Figure  1.   XRD patterns of rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO and FeS2(150)/rGO (showing by curves of a‒e)

    图  2   FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO、FeS2(150)/rGO和裸碳布的SEM图

    Figure  2.   SEM images of FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, FeS2(150)/rGO and bare carbon cloth

    图  3   FeS2(30)/rGO的EDS和SEM-EDS mapping图

    Figure  3.   EDS and SEM-EDS mapping images of FeS2(30)/rGO

    图  4   FeS2(50)/rGO的 EDS和SEM-EDS mapping图

    Figure  4.   EDS and SEM-EDS mapping images of FeS2(50)/rGO

    图  5   FeS2(100)/rGO的EDS和SEM-EDS mapping图

    Figure  5.   EDS and SEM-EDS mapping images of FeS2(100)/rGO

    图  6   rGO和FeS2(50)/rGO的XPS全谱图以及FeS2(50)/rGO中Fe 2p与S 2p 的XPS谱图

    Figure  6.   XPS full spectra of rGO and FeS2(50)/rGO as well as XPS spectra of Fe 2p and S 2p in FeS2(50)/rGO

    图  7   裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO、FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的电压-时间运行图

    Figure  7.   Voltage-time operation plots of MFCs with bare carbon cloth electrode and carton cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as anodes

    图  8   裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为阳极时MFCs的功率密度曲线

    Figure  8.   Power density curves of MFCs with bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as anodes

    图  9   裸碳布电极以及rGO、 FeS2(30)/rGO、FeS2(50)/rGO、FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极的CV响应曲线

    Figure  9.   CV response curves of bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO and FeS2(150)/rGO

    图  10   裸碳布电极以及rGO、 FeS2(30)/rGO、 FeS2(50)/rGO、 FeS2(100)/rGO和FeS2(150)/rGO修饰碳布电极作为MFCs阳极的EIS图

    Figure  10.   EIS plots of bare carbon cloth electrode and carbon cloth electrodes modified by rGO, FeS2(30)/rGO, FeS2(50)/rGO, FeS2(100)/rGO, and FeS2(150)/rGO as MFCs anodes

  • [1] LIU Y F ,ZHOU G M ,SUN Y X ,et al. Hollow cobalt ferrite nanofibers integrating with carbon nanotubes as microbial fuel cell anode for boosting extracellular electron transfer[J]. Applied Surface Science,2023, 609: 155386.
    [2] QIAN S W ,WU X S ,SHI Z Z ,et al. Tuning electrospinning hierarchically porous nanowires anode for enhanced bioelectrocatalysis in microbial fuel cells[J]. Nano Research,2022, 15(6): 5089-5097.
    [3] LIU Y F ,WANG J N ,SUN Y X ,et al. Nitrogen-doped carbon nanofibers anchoring Fe nanoparticles as biocompatible anode for boosting extracellular electron transfer in microbial fuel cells[J]. Journal of Power Sources,2022, 544: 231890.
    [4] 李桂莲,陆闽侨,侯月腾,等. 铁基纳米粒子改性碳布复合材料的制备及其在微生物燃料电池阳极中的应用[J]. 分析化学,2024, 52(4): 566-577.
    [5] MA J C ,ZHANG J ,ZHANG Y Z ,et al. Progress on anodic modification materials and future development directions in microbial fuel cells[J]. Journal of Power Sources,2023, 556: 232486.
    [6] DANGE P ,SAVLA N ,PANDIT S ,et al. A comprehensive review on oxygen reduction reaction in microbial fuel cells[J]. Journal of Renewable Materials,2022, 10(3): 665-697.
    [7] LINGLING G ,MEHRAN A A ,SONAWANE J M ,et al. Mainstreaming microfluidic microbial fuel cells: A biocompatible membrane grown in situ improves performance and versatility[J]. Lab on a chip,2022(10): 22.DOI: 10.1039/d2lc00098a.
    [8] DU Y ,MA F X ,XU C Y ,et al. Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells[J]. Nano Energy,2019, 61: 533-539.
    [9] 葛丹丹,吴兵党,杨晶晶,等. FeS2强化微生物燃料电池阳极反硝化脱氮与产电特性[J]. 环境工程技术学报,2023, 13(6): 2105-2116.
    [10] MARKS S ,MAKINIA J ,FERNANDEZ-MORALES F J. Performance of microbial fuel cells operated under anoxic conditions[J]. Applied Energy,2019, 250: 1-6.
    [11] ZHANG S ,SONG H L ,CAO X ,et al. Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells[J]. Bioresource Technology,2019, 281: 188-194.
    [12] MOUHIB M ,ANTONUCCI A ,REGGENTE M ,et al. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials[J]. Nano Research,2019, 12(9): 2184-2199.
    [13] 陈振宇,姚佳敏,柳丽芬,等. 高效单原子催化剂Ce&Co/CN改性微生物燃料电池阴极用于实际废水处理[J]. 应用化工,2024, 53(4): 996-1001.
    [14] KUGARAJAH V ,DHARMALINGAM S. Sulphonated polyhedral oligomeric silsesquioxane/sulphonated poly ether ether ketone nanocomposite membranes for microbial fuel cell:Insights to the miniatures involved[J]. Chemosphere,2020, 260(24): 127593. DOI: 10.1016/j.chemosphere.2020.127593.
    [15] KONG S T ,ZHAO J T ,LI F ,et al. Advances in anode materials for microbial fuel cells[J]. Energy Technology,2022, 10(12): 2200824.
    [16] MA J C ,WANG L F ,ZHANG Y Z ,et al. Fabrication of a molybdenum dioxide/multi-walled carbon nanotubes nanocomposite as an anodic modification material for high-performance microbial fuel cells[J]. Molecules,2024, 29(11): 2541.
    [17] MUTHUKUMAR H ,MOHAMMED S N ,CHANDRASEKARAN N ,et al. Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells[J]. International Journal of Hydrogen Energy,2019, 44(4): 2407-2416.
    [18] MEHDINIA A ,ZIAEI E ,JABBARI A. Multi-walled carbon nanotube/SnO2 nanocomposite:A novel anode material for microbial fuel cells[J]. Electrochimica Acta,2014, 130: 512-518.
    [19] WANG R W ,YAN M ,LI H D ,et al. FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density[J]. Advanced Materials,2018, 30(22): e1800618.
    [20] ZHANG L ,WANG R W ,LI H D ,et al. Enhancing microbial fuel cell performance with free-standing three-dimensional N-doped porous carbon anodes[J]. Chemical Engineering Journal,2024, 500: 156807.
    [21] MA J C ,SHI N ,JIA J F. Fe3O4 nanospheres decorated reduced graphene oxide as anode to promote extracellular electron transfer efficiency and power density in microbial fuel cells[J]. Electrochimica Acta,2020, 362: 137126.
    [22] TANG J H ,CHEN S S ,YUAN Y ,et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells[J]. Biosensors and Bioelectronics,2015, 71: 387-395.
    [23] SONG R B ,ZHAO C E ,JIANG L P ,et al. Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3O4 foams for high-performance microbial fuel cells[J]. ACS Applied Materials & Interfaces,2016, 8(25): 16170-16177.
    [24] DENG L ,GUO S J ,LIU Z J ,et al. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites[J]. Chemical Communications,2010, 46(38): 7172-7174.
    [25] ZHAO C E ,GAI P P ,LIU C H ,et al. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells[J]. Journal of Materials Chemistry A,2013, 1(40): 12587-12594
    [26] WANG Y Q ,LI B ,ZENG L Z ,et al. Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells[J]. Biosensors and Bioelectronics,2013, 41: 582-588.
    [27] WANG W ,YOU S J ,GONG X B ,et al. Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells[J]. Advanced Materials,2016, 28(2): 270-275.
    [28] PARK I H ,CHRISTY M ,KIM P ,et al. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2014, 58: 75-80.
    [29] FU L ,WANG H Q ,HUANG Q ,et al. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell[J]. Bioprocess and Biosystems Engineering,2020, 43(3): 373-381.
    [30] ZHANG Y Z ,MO G Q ,LI X W ,et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources,2011, 196(13): 5402-5407.
    [31] FABER M S ,LUKOWSKI M A ,DING Q ,et al. Earth-abundant metal pyrites(FeS2,CoS2,NiS2,and their alloys)for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. The Journal of Physical Chemistry C: Nanomaterials and Interfaces,2014, 118(37): 21347-21356.
    [32] JIANG X C ,HU J S ,LIEBER A M ,et al. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J]. Nano Letters,2014, 14(11): 6737-6742.
    [33] XU J ,XUE H T ,YANG X ,et al. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells[J]. Small,2014, 10(22): 4754-4759.
    [34] LIANG J ,JIAO Y ,JARONIEC M ,et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie(International Ed),2012, 51(46): 11496-11500.
    [35] GUO K ,FREGUIA S ,DENNIS P G ,et al. Effects of surface charge and hydrophobicity on anodic biofilm formation,community composition,and current generation in bioelectrochemical systems[J]. Environmental Science & Technology,2013, 47(13): 7563-7570.
    [36] BIAN B ,SHI D ,CAI X B ,et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy,2018, 44: 174-180.
图(10)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-19
  • 刊出日期:  2024-11-17

目录

/

返回文章
返回