Page 95 - 理化检验-化学分册2025年第三期
P. 95

张 庸,等:不同加热方式测定铝及铝合金中氢的差异性初步探讨


                   6061-T6  exposed  to  high-pressure  hydrogen  gas   microtomography,thermal  desorption  spectroscopy,
                   and  the  reason  for  high  resistance  against  hydrogen   X-ray  diffraction  study  of  hydrogen  trapping  behavior
                   embrittlement[J]. International  Journal  of  Hydrogen   in  7XXX  aluminum  alloys[J]. Materials  Science  and
                   Energy,2017,42(38):24560-24568.                   Engineering A,2016,655:221-228.
               [3]   国家市场监督管理总局,中国国家标准化管理委员                      [12]  YAMABE  J,TAKAKUWA  O,OGAWA  Y,et  al.
                   会. 铝及铝合金化学分析方法  第30部分:氢含量的测                       Hydrogen  gas  embrittlement:Mechanisms,mechanics,
                   定 加热提取热导法:GB/T 20975. 30—2019[S]. 北京:             and design[M]. Netherlands:Elsevier,2024.
                   中国标准出版社,2020.                                 [13]  ANDRONOV D Y,ARSENIEV D G,POLYANSKIY
                   State  Administration  for  Market  Regulation,  National   A  M,et  al.  Application  of  multichannel  diffusion
                   Standardization  Administration  of  China.  Methods  for   model  to  analysis  of  hydrogen  measurements  in
                   chemical  analysis  of  aluminium  and  aluminium  alloys—  solid[J]. International  Journal  of  Hydrogen  Energy,
                   Part  30:Determination  of  hydrogen  content—Heating   2017,42(1):699-710.
                   extraction-thermal conductivity method:GB/T 20975. 30—    [14]  YAEGASHI  S,SHIMIZU  K,KAMADA  Y,et  al.
                   2019[S]. Beijing: Standards Press of China, 2020.  Growth  behavior  of  pores  and  hydrogen  desorption
               [4]   朱跃进,李素娟,高鹏. 脉冲热导法测定铝中氢的探                        behavior  in  pure  aluminum  and  A6061  aluminum
                   讨[J]. 冶金分析,2016,36(12):18-25.                     alloys[J]. Materials Transactions,2024,65(1):85-92.
                   ZHU Y J,LI S J,GAO P. Discussion on determination    [15]  武光宗,王毛球,甘国友,等. 利用TDS方法研究氢在
                   of  hydrogen  in  aluminium  by  impulse  heating  thermal   两种马氏体钢中的扩散[J]. 钢铁研究学报,2011,23(9):
                   conductivity[J]. Metallurgical  Analysis,2016,36(12):  42-45.
                   18-25.                                            WU G Z,WANG M Q,GAN G Y,et al. Investigation
               [5]   谢君,张琳,朱瑛才,等. 金属中超低氢的分析研究[J].                    of hydrogen transport in two martensitic steels by means
                   冶金分析,2021,41(5):1-8.                              of  thermal  desorption  spectrometry[J]. Journal  of  Iron
                   XIE J,ZHANG L,ZHU Y C,et al. Research on analysis   and Steel Research,2011,23(9):42-45.
                   of ultralow content hydrogen in metals[J]. Metallurgical    [16]  DOSHIDA  T,TAKAI  K.  Dependence  of  hydrogen-
                   Analysis,2021,41(5):1-8.                          induced  lattice  defects  and  hydrogen  embrittlement
               [6]   POLYANSKII A M,POLYANSKII V A,YAKOVLEV          of  cold-drawn  pearlitic  steels  on  hydrogen  trap  state,
                   Y  A.  Investigation  of  the  completeness  of  specimen   temperature,strain  rate  and  hydrogen  content[J]. Acta
                   degassing  in  an  analysis  of  the  hydrogen  content  of   Materialia,2014,79:93-107.
                   aluminum alloys[J]. Metallurgist,2011,55(3):303.   [17]  CHIBA T,CHIDA T,OMURA T,et al. Preparation
               [7]   SUZUKI  H,KOBAYASHI  D,HANADA  N,et  al.        of  an  overall  intergranular  fracture  surface  caused  by
                   The  existing  state  of  hydrogen  in  electrochemically   hydrogen and identification of lattice defects present in the
                   charged  commercial  purity  aluminum  and  its  effect  on   local area just below the surface of tempered martensitic
                   the tensile properties[J]. Journal of the Japan Institute of   steel[J]. Scripta Materialia,2023,223:115072.
                   Metals,2010,74:65-71.                         [18]  CHIBA T,TAKAI K. Lattice defects present beneath
               [8]   KAMOUTSI  H,HAIDEMENOPOULOS  G  N,              crack  initiation,propagation,and  final  fracture  regions
                   BONTOZOGLOU V,et al. Effect of prior deformation   on the same hydrogen embrittlement fracture surface of
                   and  heat  treatment  on  the  corrosion-induced  hydrogen   martensitic  steel[J]. ISIJ  International,2024,64(11):
                   trapping in aluminium alloy 2024[J]. Corrosion Science,  1732-1736.
                   2014,80:139-142.                              [19]  TAKAKUWA  O,OGAWA  Y,MIYATA  R.
               [9]   HORIKAWA  K,KOBAYASHI  H.  Hydrogen             Antagonistic  fatigue  crack  acceleration/deceleration
                   absorption of pure aluminum by friction of the surface in   phenomena in Ni-based superalloy 718 under hydrogen-
                   water and its effect on tensile properties[J]. Journal of the   supply[J]. Scientific Reports,2023,13(1):6804.
                   Japan  Institute  of  Metals  and  Materials,2020,84(3):    [20]  TAKAI K,MURAKAMI K,YABE N,et al. Properties
                   68-73.                                            of thermal hydrogen desorption and substitution of high-
               [10]  FUJIHARA  H,TODA  H,SHIMIZU  K,et  al.          pressure gas charging by electrolysis charging for inconel
                   Hydrogen  desorption  behavior  in  Al-8%Zn-1%Mg   625 and SUS 316L[J]. Journal of the Japan Institute of
                   alloy[J]. Journal of Japan Institute of Light Metals,2019,  Metals,2008,72(6):448-456.
                   69(3):186-193.                                [21]  HORIKAWA  K,YAMAUE  K,KOBAYASHI  H.
               [11]  BHUIYAN M S,TODA H,PENG Z,et al. Combined       Effect  of  continuous  hydrogen  charging  on  tensile
                                                                                                       •   329   •
   90   91   92   93   94   95   96   97   98   99   100