Page 102 - 理化检验-化学分册2024年第十二期
P. 102

李 立,等:电感耦合等离子体原子发射光谱法测定高砷铅烟灰中铟的含量


              采用内标法进行定量。                                             177-181.
                  本工作以体积比 1∶3的盐酸-硝酸混合溶液对                         [8]   陈文宾,许兴友,马卫兴,等 . 在 CTMAB 存在下用
              高砷铅烟灰样品进行前处理,提出了ICP-AES测定                              2- 羟基 -5- 磺酸基苯基重氮氨基偶氮苯光度法测定
                                                                     铟 [J]. 理化检验 - 化学分册,2007,43(5):367-368.
              高砷铅烟灰中铟含量的方法。该方法操作简单,灵
                                                                 [9]   张红梅,陈锐. ITO粉及ITO靶材中铟的测定-EDTA
              敏度、精密度、准确度高,检出限低,检测快速,相对
                                                                     容量法[J]. 稀有金属,2003,27(1):188-190.
              于碱熔法成本低、基体干扰小,更加安全高效,而且                            [10]  左鸿毅. 火焰原子吸收光谱法测定锌精矿中铟[J]. 冶
              不存在共存元素干扰。                                             金分析,2022,42(6):37-44.
                                                                 [11]  袁丽丽. 火焰原子吸收光谱法测定再生锌原料中
              参考文献:
                                                                     铟[J]. 冶金分析,2021,41(2):54-59.
                                                                 [12]  吕佳,王光明,李辽沙. 火焰原子吸收光谱法测定高炉
               [1]   赖广辉,覃祚明,黄旭. 火焰原子吸收光谱法测定铟冶
                   炼窑渣中铟[J]. 理化检验-化学分册,2008,44(3):283-               尘中铟[J]. 冶金分析,2011,31(6):22-25.
                                                                 [13]  孔凡丽,胡花苗,李艳萍,等. 火焰原子吸收光谱法
                   283.
                                                                     测定铜烟尘物料中低含量铟[J].  云南冶金,2018,
               [2]   李晓峰, 朱艺婷,徐净. 关键矿产资源铟研究进展[J]. 科
                                                                     47(4):87-90.
                   学通报,2020,65(33):3678-3687.
                                                                 [14]  廖彬玲,赖秋祥,刘芳美. 火焰原子吸收光谱法测定
               [3]   冯静. P350 萃取色谱分离无火焰原子吸收光谱法测
                                                                     铜阳极泥中铟量的研究[J]. 世界有色金属,2022(10):
                   定地球化学样品中的铟[J]. 岩矿测试,2005,24(2):
                                                                     153-158.
                   138-140.
                                                                 [15]  苏春风. 电感耦合等离子体发射光谱 (ICP-OES)法测
               [4]   王树楷. 铟的应用与提取进展[J]. 中国工程科学,                      定铅泥、铅烟灰中铟量[J]. 中国无机分析化学,2020,
                   2008,10(5):85-94.                                 10(5):36-39.
               [5]   吴文启,黄煦,李奋,等. EDTA滴定法测定废铟锡氧                  [16]  罗海霞. 碱熔-电感耦合等离子体原子发射光谱法测定
                   化物靶材中铟[J]. 冶金分析,2007,27(11):37-40.                富铟烟灰中铟[J]. 冶金分析,2021,41(5):51-56.
               [6]   姚金环,李延伟. 不同含量铟的分析方法综述[J]. 冶金                [17]  马丽. 电感耦合等离子体发射光谱法测定锌精矿中的
                   分析,2010,30(4):45-53.                              铟[J]. 中国无机分析化学,2013,3(2):50-52.
               [7]   鲁鹏,朱悬,彭巨擘,等. 基于示差脉冲伏安法检测高                   [18]  武汉大学. 分析化学-上册[M]. 5版. 北京:高等教育
                   纯铟电解液中铟离子[J]. 分析试验室,2023,42(2):                   出版社,2006:62-66.

                  Determination of Indium in High Arsenic Lead Soot by Inductively Coupled
                                       Plasma Atomic Emission Spectrometry



                                                      LI Li, WU Mingli
                     (1. Guangdong Institute of Mineral Applications, Shaoguan 512026, China; 2. Key Laboratory of Radioactive and
                            Rare Scattered Mineral Resources of Ministry of Natural Resources, Shaoguan 512026, China)

                  Abstract: A method for determination of indium in high arsenic lead soot by inductively coupled plasma atomic emission
              spectrometry (ICP-AES) was proposed. 0. 10-0. 15 g of the sample was taken into a 250 mL-beaker, and a little water was
              added to moisten. 5 mL of hydrochloric acid was added and the mixture was digested at 200 ℃ on a electric heating plate for 2 min.
                                                                                                             −1
              15 mL of nitric acid was added, and the mixture was concentrated to 10 mL on a 200 ℃ electric heating plate. 10 mL of 1. 5 g · L
              chromium internal standard solution was added after the solution was cooled down. The sample solution was made its volume up
              to 200 mL with water. The emission intensity of indium was measured at 325. 606 nm, and the emission intensity of chromium
              internal was measured at 267. 716 nm. As shown by the results, linear relationship between the ratio of the corresponding emission
              intensity to the internal standard emission intensity and mass concentration of indium was found in the range of 5-40 mg · L −1 ,
              with detection limit (3s) of 0. 002 0%. RSDs (n=11) of the determined values of test for precision on four samples were less than
              1. 5%. Test for the spiked recovery was made on actual samples, giving results in the range of 99. 2%-101%. The standard
              addition method was used for verification, and the detemined values were basically consistent with those from this method.
                  Keywords: inductively coupled plasma atomic emission spectrometry; high arsenic lead soot; indium; internal standard
              method
               •   1296   •
   97   98   99   100   101   102   103   104   105   106   107